
Chapter 6 

Free Electron Fermi Gas



Free electron model:

• The valence electrons of the constituent atoms become conduction 

electrons and move about freely through the volume of the metal.

• The simplest metals are the alkali metals– lithium, sodium, potassium, 

cesium, and rubidium.

• The classical theory had several conspicuous successes, notably, the 

derivation of the form of Ohm’s law and the relation between the electrical and 

thermal conductivity. 

• The classical theory fails to explain the heat capacity and the magnetic 

susceptibility of the conduction electrons. M  =  B

• Why the electrons in a metal can move so freely without much deflections?

(a) A conduction electron is not deflected by ion cores arranged on a periodic 

lattice, because matter waves propagate freely in a periodic structure.

(b) A conduction electron is scattered only infrequently by other conduction 

electrons.

Pauli exclusion principle. 

Free Electron Fermi Gas: a gas of free electrons subject to the Pauli Principle



Valence electrons form the electron gas

ELECTRON GAS MODEL IN METALS
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Figure 1.1     (a) Schematic picture of an isolated atom (not to scale). (b) In a 

metal the nucleus and ion core retain their configuration in the free atom, but 

the valence electrons leave the atom to form the electron gas.



Na : simple metal

3.66A 0.98A

Core ~ occupy about 15% in 

total volume of crystal

In a sea of conduction of electrons



Drude Model
- Based on the concept of kinetic theory of neutral dilute ideal gas

- Apply to the dense electrons in metals by the free electron gas picture

*** Basic approximations are:

(1) Between collisions:

-- Neglect electron - ion core interaction --- Free electron approximation

-- Neglect electron - electron interaction --- Independent electron approximation

(2) During collisions:

-- Assuming electrons bouncing off the ion core

-- Assuming some form of scattering

(3) Relaxation time approximation:

-- Collision mean free time  
-- Independent of electron position and velocity

(4) The collisions are assumed to maintain the thermal equilibrium



Classical Theory (Drude Model)

Drude Model, 1900AD, after Thompson’s discovery of electrons in 1897

- Based on the concept of kinetic theory of neutral dilute ideal gas

- Apply to the dense electrons in metals by the free electron gas picture

Success:

(1)  The Ohm’s Law 

the electrical conductivity

J =  E ,  = n e2  / m,

(2)  The Weidmann Frantz Law

Ke / (e T) = L  ~ a constant 

Failure:

(1) Heat capacity  Cv~ 3/2 NKB

The observed heat capacity is only  0.01,

too small.

(2) The observed thermal power Q is also 

only ~ 0.01, as Q = - Cv /3ne

(3) Magnetic susceptibility  is incorrect.for electrons, 

since K = 1/3 vF
2 Cv

100 times; 0.01 times(TF /T) (T/TF)
See Ashroft & Mermin, Ch. 1

The number of electrons per unit volume with velocity in the range du about u

Classical Statistical Mechanics: Maxwell Boltzmann Distribution

fB(u) = n (m/ 2pkBT)3/2  exp(-mu2/2kBT)



Thermal Electrical Effect:  (Seeback Effect) 

As a temperature gradient is applied to a long thin bar, 

it should be accompanied by an electrical field directed 

opposite to the temperature gradient

E =  Q  T

Q as the thermal power

Q = E /  T

= - Cv / (3ne)

As in Drude model, Cv and Q are  100  times too small !

See Ashcroft & Mermin, Ch. 1,

p. 24-25

E as the thermal electric field 



We have shown that the one-dimensional energy distribution is

but would like to have a distribution for three dimensions. A basic probability idea 

is that for three independent events you take the product of the individual 

probabilities. The three-dimensional probability distribution then takes the form:

It must be noted here that while this has the form of the Boltzmann 

distribution for kinetic energy, it does not take into account the fact that there are 

more ways to achieve a higher velocity. In making the step from this expression to 

the Maxwell speed distribution, this distribution function must be multiplied by the 

factor 4πv2 to account for the density of velocity states available to particles.

http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c2


Maxwell Speed distribution as a sum over all directions 
To put the three-dimensional energy distribution into the form of the Maxwell 

speed distribution, we need to sum over all directions. One way to visualize that 

sum is as the development of a spherical shell volume element in "velocity space".

The sum over the angular coordinates is just going to give the area of the 

sphere, and the radial element dv gives the thickness of the spherical shell. That 

takes the angular coordinates out of the distribution function and gives a one-

parameter distribution function in terms of the "radial" speed element dv. 

http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c3


** Can still use the dilute, neutral gas, kinetic picture as in the classical case.

** Justifications:

 One can still describe the motion of an electron classically, 

If we can specify its positions and momentum as accurately as possible without

violating the Heisenberg uncertainty principle.

 One is able to specify the position of an electron on a scale small compared 

with a distance  over which the field or temperature varies. 

Free Electron Gas Model (Sommerfeld) :

Quantum Statistical Mechanics: 

The Pauli exclusion principle requires that the replacement of 

Maxwell Boltzmann distribution with the Fermi Dirac distribution as



Success:

 Resolve the heat capacity anomaly 

 Give correct CV , thermal power, consistent with the experiments for simple 

metals

 Good at low T, but not at medium T for noble metals?  transition metals?

Approximations:

 Neglect the effect of ions between collisions.

 The role of ions as a source of collision is unspecified.

 The contribution of ions to the physical phenomenon is not included.

Free Electron Gas Model (Sommerfeld) :

Ashroft & Mermin: Chapter 2



Maxwell Botzmann distributuion

Fermi Dirac Distribution

X = mu2/2KBT

fFD
fMB

X

X

(a)

(b)

fMB  v2 exp(-mv2/2KBT)

fFD = [exp(x) + 1] -1



1.

2.

3.

Chemical Potential  is a function of T, and  is such that   D(e)f(e) de = N

 = 𝝐𝑭 at  T      0

Ground State : at absolute zero temperature, how about for T > 0 ?

For 𝝐 <  , f(𝝐) = 1;   for 𝝐 >  , f(𝝐) = 0



for 𝜖= u

Fermi Dirac Distribution Function                                                         (5)

0.5



T = 0

T > 0



Free Electron Gas in One Dimension

Standing wave solution

Quantum Theory and Pauli Principle

Electron of mass M, in a 1-D line of length L confined to an infinite barrier

K = np / L

Fixed boundary conditions

N (n/2) = L



Fermi wavevector kF

Fermi Temperature TF

nF = N/2



or  n(n/2) = L

n =1

n = 2

n = 3

K

So   n = 2 L/ n

K = n p / L

Standing wave solution



(1) For electrons confined to a cubic of edge L, standing wave solution

(2) Periodic boundary conditions

Exp (ikL) = 1

k = ± n 2p / L

FREE ELECTRON GAS IN THREE DIMENSIONS

Wave functions satisfying the free particle Schrödinger equation and the 

periodicity condition are of the form of a traveling plane wave:

K = np / L



At the surface 𝝐f , Kf

Fermi Sphere

Fermi Surface

at the Fermi surface 𝝐F,  kf

Linear momentum operator



𝝐F , VF , kF , TF See Table 1



From eq. 17

in 3-D

f(𝝐,T) D(𝝐)

At  T = 0,  D(𝜖) ~𝜖1/2
ln N = 

𝟑

𝟐
In 𝝐 + constant ;  

𝒅𝑵

𝑵
=  

𝟑

𝟐
．

𝒅𝝐

𝝐



Heat Capacity of the Electron Gas

Classical theory, Cv = 3/2 NKB    for electrons

T > 0

T = 0

N ~ N (T/TF) , U ~ N (T/TF) kBT

T/TF ~ 0.01

X 2



• The name "equipartition" means "equal division," 

• The original concept of equipartition was that the total kinetic energy of a system 

is shared equally among all of its independent parts, on the average, once the 

system has reached thermal equilibrium. Equipartition also makes quantitative 

predictions for these energies. 

• For example, it predicts that every atom of a noble gas, in thermal equilibrium at 

temperature T, has an average translational kinetic energy of (3/2)kBT, where kB

is the Boltzmann constant. As a consequence, since kinetic energy is equal to 

1/2(mass)(velocity)2, the heavier atoms of xenon have a lower average speed 

than do the lighter atoms of helium at the same temperature. 

• In this example, the key point is that the kinetic energy is quadratic in the velocity. 

The equipartition theorem shows that in thermal equilibrium, any degree of 

freedom (such as a component of the position or velocity of a particle), which 

appears only quadratically in the energy, has an average energy of 1⁄2 kBT and 

therefore contributes 1⁄2 kB to the system's heat capacity.

• It follows that the heat capacity of the gas is (3/2)N kB and hence, in particular, 

the heat capacity of a mole of such gas particles is (3/2)NAkB.

The equipartition theorem 

https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Noble_gas
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Xenon
https://en.wikipedia.org/wiki/Helium
https://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Mole_(unit)


If the electrons obeyed classical Maxwell-Boltzmann statistics, 

so that for all electrons, then the equipartition theorem would give

E =  3/2 N KBT

Cv =  3/2 N KB



The total energy increase for heating to  T        from T =  0 

Since at T = 0, f(𝝐) =1 

for 𝝐 < 𝝐F

𝝐 < 𝝐F

Since only f(𝝐) is temperature dependent

From (26) to (27),

see derivation 

next page



Eq. (24) may be rewritten as

From Eq. (26), these two items are equal.



U / N𝝐F

kBT/ 𝝐F

3-D



3-D

1/0.763 = 1.35



kT /𝜖F

•  is determined by satisfying 

 D(𝜖)f(𝜖)d𝜖 = N

• At very low T,  lim  = 𝜖F

• For the 3-D case, see Ashcroft 
& Mermin, P. 45-47

 = 𝜖F [ 1-1/3 (p kBT/ 2𝜖F)2]

• For the 2-D case, see Kittel 
problem 6.3

(T) = kBT ln[exp(pnћ2/mkBT)-1]

1-D

3-D



at very low T,  lim  = 𝜖F

𝝐F / >> 1

From Fig. 3,

;

Judging from Figs. 7 and 8, the variation of  with T,  



𝜸 = 
𝟏

𝟐
𝝅𝟐NkBT/TF Since   𝝐F ∝ TF ∝ 1/m       ∴ 𝛾 ∝ m

where 𝝐F = kBTF

At low T, the electronic term dominates

K metal

Compare with CV = 2NkBT/TF

(See Eq. 17)

From eq. (21)



Express the ratio of the observed to the free electron values of the electronic 

heat capacity as a ratio of a  thermal effective mass mth to the electron mass m, 

where mth is defined

(tight binding model)

See Table 2

The departure from unity involves three separate effects:

A:  The interaction of the conduction electrons with the periodic potential of the   

rigid crystal lattice band effective mass.

B:  The interaction of the conduction electrons with phonons.

C:  The interaction of the conduction electrons with themselves.



Electronic part of heat capacity in SC state:  Ces/γTc  a exp (-b Tc/T)

Heat Capacity of Ga at low T

Discontinuous change of 

C at Tc,  C/ Tc =1.43

Is proportional to -1/T, suggestive of excitation of electrons across an energy gap.





In an electrical field E , magnetic field B, the force F on an electron , 

the Newton second law of motion becomes

First considering  B = 0, in zero magnetic field

q = -e

ELECTRICAL CONDUCTIVITY AND OHM’S LAW

If the field is applied at time t then at a later time t the sphere will be displaced 

to a new center at



At the ground state

The displacement of Fermi sphere

under force F



Resistivity

Conductivity Ohm’s Law

q = -e

See Table 3

ħ



Imperfections

Lattice phonons

Matthiessen’s Rule. 

To a good approximation the 

rates are often independent.

and can be summed together

Since  r ~ 1/



Resistivity Ratio =  r (300K)/ ri(0)

rL (T)

ri (0)



Nph  T

Different ri (0) , but the same  rL

Potassium metal

At T > 

r  T

r  Nph  T



Umklapp Scattering

Bloch’s  T5 Law

Normal process

Umklapp process

where qo, u are related to the geometry of 

the Fermi surface

Umklapp scattering of electrons by phonons (Chapter 5) accounts for most of 

the electrical resistivity of metals at low temperatures. These are electron-

phonon scattering processes in which a reciprocal lattice vector G is involved, 

the normal electron-phonon collision k’ = k + q.

This scattering is an umklapp process, k’ = k + q + G

qo: the minimum phonon wavevector for Umklapp process

At low enough temperatures the number of phonons available for umklapp

scattering falls as exp (－ U /T),

Bloch obtained an analytic result for the dominating “normal scattering”, with 

𝝆𝑳 ∝ 𝑻𝟓/𝜽𝟔 at very low temperatures. 



The electrical resistivity of most materials changes with temperature. 

If the temperature T does not vary too much, a linear approximation is typically used:

The temperature dependence of resistivity:

Metals

In general, electrical resistivity of metals increases with temperature. Electron–phonon

interactions can play a key role. At high temperatures, the resistance of a metal increases 

linearly with temperature. As the temperature of a metal is reduced, the temperature 

dependence of resistivity follows a power law function of temperature. 

Mathematically the temperature dependence of the resistivity ρ of a metal is given by the 

Bloch–Grüneisen formula:

A is a constant that depends on the velocity of electrons at the Fermi surface, the Debye 

radius and the number density of electrons in the metal. R is the Debye temperature as 

obtained from resistivity measurements, and matches very closely with the values of Debye 

temperature obtained from specific heat measurements. 

n is an integer that depends upon the nature of interaction.

1. n=5 implies that the resistance is due to scattering of electrons by phonons, 

(simple metals).  

2. n=3 implies that the resistance is due to s-d electron scattering,(as is the case 

for transition metals). 

3. n=2 implies that the resistance is due to electron–electron interaction.

https://en.wikipedia.org/wiki/Linear_approximation
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Phonon


The free particle acceleration term is (ℏ𝑑/𝑑𝑡) 𝛿k and the effect of collisions 

(the friction) is represented by ℏ𝛿k/𝜏 , where 𝜏 is the collision time.

The equation of motion is 

MOTION IN MAGNETIC FIELDS

B is along the z axis



Hall Effect

The Hall field is the electric field developed across two faces of a conductor, 

in the direction of   j x B.

If current cannot flow out of the rod in the y direction we must have 𝛿Vy = 0 

and Vy = 0, transverse electric field                                                           (53)

jx, Ex

BZ

Ey

assume all relaxation  for both thermal 

and electrical conduction are equal.

Hall resistance

𝝆𝑯 = BRH = Ey / jx (55a)



When the transverse field Ey

(Hall field) balances the Lorentz force

neEy = - ejxB/c

RH = Ey/jx B

=  -1/nec



by the energy band theory.

See RH listed in Table 4

Al, In  are in disagreements with the prediction,

with 1 positive hole, not 3 negative electrons



Thermal conductivity of Metals

From eq. (36) for  CV in  K,  and 𝝐F = 1/2 mvF
2

It does not involve  , 
if the relaxation times are identical for electrical and thermal processes.

CV = 1/2p2NkBT/TF

See Table 5 for L



Home work, Chapter 6

 No.1

 No.3

 No.6


